DISTRIBUTED AUTOMATION AND CONTROL SYSTEMS

Eugene M. Burmakin, BorisA. Krassi

Helsinki University of Technology
S. Petersburg Sate Technical University

Address: Otakaari 1, HUT, FIN-02015, Finland
E-mail: {Eugene.Bourmakine,Boris.Krassi} @hut.fi

Abstract — Distributed automation and control systems are considered from the implementation point of
view. The role of middleware and, in particular, the object-oriented open-standard-based CORBA is discussed
and its usefulness for system integration and communication abstraction is shown on a practical example of an
experimental robotic system.

1. INTRODUCTION

Nowadays, the level of integration determines the effectiveness of modern technical systems [1]. With
respect to technology, integration has three principal constituents: standardization, automation and
rationalization. Application of the system approach and functional and modular decomposition results in that
systems become distributed, i.e. consist of a humber of physically and/or logically distributed components that
congtitute the system to reach the common goal. Communication between such components is a crucial issue.
The experimental work, which is described in this paper in section 5, has proved the necessity of the utilization
of middleware [2], and an emergent CORBA technology [3], that may become the flexible glue for connecting
different components of distributed automation systems. This issue is somewhat related to the problem that
emergent technologies in the domain of information technologies and communications have been being
implemented mostly in e-business applications that have much less inertia to evolve than industrial automation,
which utilizes only proved and reliable technologies. Also, it should be mentioned that further development of
automation systems depends on the progress in other related applied and fundamental disciplines[4].

2. DISTRIBUTED SYSTEMS

A key property of modern automated systems is the intensive cross-communication and interaction
between systems’ entities and their dynamically changing environment. Consider, for example, a decentralized
control of satellite formations [5]. Spacecrafts can co-operatively track planned maneuvers while processing only
local measurements because centralized real-time control is not effective due to long communication links. The
same concept can be exploited for group control of ship, aircraft, cruise missile [4], and other systems that
operate in dynamic environments and are highly co-operative, for instance, hardware and software mobile
agents. In contrast, home automation systems comprise a number of devices from different vendors that can be
governed by a central controller [6]. Another important application is SCADA systems [7]. A SCADA system
consists of a central host, a set of field points for data acquisition and control, and specia software. One of the
most popular SCADA systems isthe one of National Instruments[8].

The main features of the above-mentioned systems are:

e The systems comprise physically and/or logically distributed components (entities);

e The entities are essentially heterogeneous (different architecture, hardware, networking, operating

systems and software);

e Cross-communication and co-operation between the entities and their environment are key features;

e Theentities act as a unity to achieve acommon goal.

A system that has these features is the distributed one. In distributed systems the resources are shared and
logic of the system is distributed among its components. Development of distributed systems is a challenging
task and the challenges are: heterogeneity, openness, scalability, concurrency, transparency and mobility [9, 10].

3. MIDDLEWARE

Communications between heterogeneous entities of the distributed system play a crucial role. There are
different approaches to communications abstracting in the heterogeneous distributed system. On the one hand,
the low-level approach requires a developer to be concerned with many details of the interaction between

components of the system, like the packaging of complex data into simple transferable messages. On the other
hand, high-level approach is tightly coupled with a particular programming environment and limited to one
programming language. The middleware approach lies in between. The idea is introduce a new layer “in the
middle’, between the application and the network, that hides the complexity of communication and data transfer.
From the developer point of view, the invocation of a remote procedure should appear no different than the
invocation of alocal one.

Middleware can be defined as “software (glue) that connects two otherwise separate applications’ [2],
and as “a software layer that provides a programming abstraction as well as masking the heterogeneity of the
underlying networks, hardware, operating systems and programming languages’ [9] that is designed to solve the
above-mentioned challenges of distributed systems.

In automation systems, middleware can be considered as an abstracting and uniting layer between
entities' hardware, their low-level control, and the high-level control of the entire system. It is an advantage of
middleware-based systems that various control architectures, e.g. group, distributed, supervisory control, client-
server interaction etc., can be implemented within the same generic middleware-based platform. Middleware can
provide interaction of sub-systems and modules within a system (module-based robotics, SCADA), and
interoperability among distinguished but co-operative systems (industrial robots and an automated enterprise)
[11].

The most challenging issues related to automation and, in particular, robotic systems with middleware
are: reliability (fault-tolerance) and (hard) real-time operations. Those properties depend not only on middlieware
but do on the entire system (hardware and software platform).

4. CORBA-BASED AUTOMATION SYSTEMS

The Common Object Request Broker Architecture (CORBA) is a widely recognized by the control
community [12] object-oriented open-standard-based middleware [OMG2002] for distributed systems
integration. CORBA supports interoperability, portability and reusability of systems' components. There is a
number of CORBA implementations and mappings to various programming languages that are available from
different vendors. Also, its real-time and fault-tolerant specifications have been developed recently [3].

Architecture of atypical CORBA-based system [13] is presented in Fig. 1.

In arguments, . A

. Object O] O]
Cliert operatlon (sewant) Users R R Robot

B B

arguments — __

Sub retumn value Skeleton O @)

o

SCADA R o) R Vision

POA B 1 B

=2 g =2

Car) (- omwe o] |8 o
Remote Measure
control R R menltjs

OScoe OScore B_ B_

oS1I0 os10 O]
R Control

B

—y ~_~

Figure 1. CORBA-based architecture

CORBA component’s interface is described in a neutral Interface Definition Language (IDL). CORBA
IDL is a declarative non-programming language; it does not provide any implementation details. The methods
that are specified in IDL can be implemented with any programming language such as C++ and Java using rules
defined by OMG. The Object Request Broker (ORB) is an object bus that provides a transparent communication
means for objects to send/receive requests/responds to/from other objects. The General Inter-ORB Protocol
(GIOP) provides interoperability (a set of message formats) between ORB implementations from different
vendors. The GIOP can be mapped onto different telecommunication protocols for transport protocol
independence. Thus, the Internet Inter-ORB Protocol (110P) is a mapping of GIOP onto the TCP/IP protocol
stack.

5. APRACTICAL EXAMPLE

A prototype of a robotic system (Fig. 2) has been developed to study most recent innovations in
communications and information technology [14]. The purpose was to develop a prototype of an industrial
robotic system, which on the one hand would be simple enough to keep full control under the system and its
environment, and on the other hand would be sufficiently complex to reflect al the important features and yield
the results useful for further development of industrial robotic systems.

Three-pendulum type robot

Diffused light lamp Diffused light lamp
omr = ... I.-
P eerimi }»
&5 v
Arm articulated robot iy . |
._.,.._a 1= ’-?;_d- ’
= i il
M.l.;_ﬁ [|7
Working table
I
7~ N
gty Direct light lamp Direct light lamp
[':__.".‘::,: -7t Camera 2
s S
Camera 1

Figure 2. Experimental robotic system

The experimental robotic system consists of a robotic cell', a machine vision system, and a general
controller. The general controller is a piece of software, which closes the loop “the robotic cell — the machine
vision system” and keeps track of user’s commands. The machine vision system deals with model uncertainties
and external disturbances. The system is designed to be flexible enough to obey unpredictable commands of a
user. The software subsystem has four levels. The robotic level software is a set of simple atomic subroutines
executed on robots’. The interface level software covers al details of the low-level communication and
synchronization. The application level software utilizes the high-level functionality provided by the interface
level software. It implements the logic of action of the system as a whole and, therefore, has a very high level of
abstraction. The user interface level software provides user’s input and introduces into the system some elements
of interactivity.

The experimental robotic system is a typical distributed system. Logic and resources are shared among
the heterogeneous entities of the system. All components of the system have network capabilities, but operate
under different operating systems with different programming languages. Hence, it could be efficient to use
CORBA for system integration and communication abstraction. But currently the robots do not have any
CORBA capabilities. Instead, an obsolete non-object-oriented RPC (Remote Procedure Call) is used. As aresult,
amost 75% of development time was consumed by the interface level software development and system
integration. In other words, the negative experience has proved the concept of usefulness of middieware and
CORBA in particular. The main result of the practical work is the very proof of the concept as well as the
experimental system itself that can be used for further research and development in the domain of industrial
distributed automation and robotic systems.

6. CONCLUSIONS

Distributed automation and control systems are considered from the implementation viewpoint.
Theoretical and practical aspects of middleware in distributed automation systems and, in particular, the object-
oriented open-standard-based CORBA middleware are discussed. The usefulness of middleware for system
integration and communication abstraction is shown on a practical example of the experimental robotic system.
The main result is that middleware can significantly reduce development time, increase interoperability,
portability and reusability of automation system’s components and subsequently increase usability and
competitiveness of a middleware-based automation system. Future work is related to the issues of hard real-time

! The robotic cell hastwo ABB industrial robots: arm-articulated |RB 1400 and three-pendulum type |RB 340.
2 For example, move an object from one position to another etc.

and reliable operations, exploitation of design patterns, context awareness [15], and mobile re-configurable
automation distributed systems.

7. ACKNOWLEDGEMENTS

The authors wish to thank all their colleagues at the Industrial 1T Lab, Helsinki University of Technology,
Finland, and especially their supervisor prof. Juha O. Tuominen. Also, attention and support of prof. Leonid V.
Babko, St. Petersburg State Technical University, Russia, are gratefully acknowledged.

8. REFERENCES

[1] Mantylg, M., Andersin, H., Enterprise systems integration, Helsinki, HUT, 1998, 313 p.

[2] Britton, C., IT Architectures And Middleware, Addison-Wesley, 2001, 296 p.

[3] Object Management Group (OMG), The CORBA Architecture Specification, <http://www.omg.org>

[4] luerevich, E.I., Robotics, St.-Petersburg, 2001, 300 p., (in Russian)

[5] Carpenter, J.R., Decentralized Control Of Satellite Formations, Int. J. of Robust and Nonlinear Contr., vol.
12, p. 141-161

[6] Wu, Q., Wang, F.-Y., Lin, Y., A Mobile-Agent Based Distributed Intelligent Control System Architecture For
Home Automation, |IEEE, 2001

[7] An Introduction To SCADA Systems, <http://members.iinet.net.au/~ianw/primer.html>

[8] National Instruments, < http://www.ni.com>

[9] Coulouris, G., Dollimore, J., Kindberg, T., Distributed Systems: Concepts And Design, 3" edition, Addison-
Wesley, 2001, 772p.

[10] Burmakin, E., Developing A Framework For Building Distributed Systems Operating In Mobile
Environments, Master’sthesis, HUT, 2002

[11] Jia, S., Takase, K., An Internet Robotic System Based CORBA, Proc. |EEE Int. Conf. on Rob. &
Automation, 2001, p. 1915-1920

[12] Sanz, R., Clavijo J., Segarra, M., et al., CORBA-Based Substation Automation Systems, Proc. |EEE Int.
Conf. on Contr. Applications, 2001, p. 773-777

[13] Siegdl, J., CORBA Fundamentals and Programming, Wiley, OMG 1996, 693 p.

[14] Krassi, B., Control Of Industrial Systems, Which Are Based On Robots With A Parallel Structure, Master’s
thesis, HUT, 2001, 76 p.

[15] Burmakin, E., Krassi, B., Design Patterns For Development Of Dynamic Distributed Automation Systems,
BOAC 2002

	INTRODUCTION
	DISTRIBUTED SYSTEMS
	MIDDLEWARE
	CORBA-BASED AUTOMATION SYSTEMS
	A PRACTICAL EXAMPLE
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

